Penjelasan Mengenai Teknologi Biometrik
Teknologi biometrik merupakan teknologi yang memanfaatkan identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau kunci dalam kontrol akses ke sebuah sistem. Teknologi biometrik merupakan bagian dari sistem keamanan, tujuan utama teknologi ini untuk menjaga dan melindungi identitas seseorang. Cara kerja teknologi biometrik yaitu dengan menggunakan teknik pattern recognition, yaitu teknik pengenalan pola. Pola yang akan dikenali dapat bermacam-macam, seperti wajah, iris mata, tanda tangan, sidik jari, garis telapak tangan dan pengenalan suara.
Hal ini dibuktikan dengan adanya beberapa penelitian, diantaranya berdasarkan penelitian Chin-Chuan Han, dkk (Han,Chin-Chuan., dkk, 2001) yang membuktikan bahwa “garis telapak tangan dapat dijadikan pola pengenalan diri seseorang dengan tingkat keakuratan 98%”. Sedangkan Bowo Leksono, Achmad Hidayarno, dan R. Rizal Isnanto (Laksono,Bowo., Hidayarno,Achmad., and Isnanto,R.Rizal, 2011) membuktikan bahwa “Sidik Jari dapat dianalisis untuk dijadikan salah satu bentuk pengenalan dengan berbagai jenis ekstensi citra, seperti .jpg, .png, .tif dan lain-lain”.
Banyak cara telah digunakan untuk menyelesaikan permasalahan personal authentication. Seperti penggunaan password, kartu identitas, Personal Identification Number (PIN) dan passport, namun cara itu tidak lagi akurat, karena berbagai cara telah dilakukan orang untuk memanipulasi identitas tersebut. Selain itu peluang untuk hilang atau bahkan lupa sangat besar. Untuk saat sekarang ini, kebutuhan mengharapkan sistem otentikasi identitas yang lebih akurat, cepat dan nyaman untuk digunakan. Solusi yang paling tepat tentunya dengan menggunakan teknologi biometrik. Objek yang digunakan berasal dari diri pribadi yang tidak dapat dicuri, lupa atau bahkan hilang. Struktur fisiologis seseorang tidak akan sama, sekalipun individu tersebut kembar. Sehingga sistem akan memberikan ruang kontrol akses yang mudah dan murah.
Personal Authentication saat ini sudah banyak dikembangkan dengan objek yang berbeda-beda, diantaranya terdiri dari pengenalan tanda tangan, sidik jari, pola wajah, Deoxyribo Nucleic Acid (DNA) dan sebagainya. Salah satu diantaranya adalah pengenalan wajah atau yang biasa disebut dengan face recognition. Wajah termasuk identitas unik yang dimiliki oleh setiap manusia, sehingga dapat dengan mudah untuk dikenali oleh sistem otentikasi.
Otentikasi merupakan metode yang digunakan untuk melihat apakah orang atau pengguna tersebut betul-betul orang yang berhak dan dipertanggung jawabkan keasliannya, Penggunaan face recognition sebagai otentikasi diri terhadap suatu sistem dianggap memberikan kemampuan yang akurat dan tepat apabila digunakan pada sistem keamanan komputer, home security system, coporate network dan sebagainya, selain pada penggunaan yang cukup mudah, face recognition juga tidak membutuhkan biaya yang besar, karena pengaplikasian sistem ini bisa hanya dengan menggunakan sensor berupa kamera.
Dibandingkan dengan teknologi fingerprint dan pengenalan iris mata, teknologi ini memang dianggap memiliki rate yang tinggi dalam pengenalan identitas seseorang, akan tetapi sensor yang akan digunakan bernilai cukup mahal, sehingga tidak cocok jika diterapkan dalam keamanan tingkat rendah. Selain itu, fingerprint juga sudah menjadi teknologi resmi yang digunakan oleh pihak kepolisian dalam mencari identitas seseorang dan transaksi yang bersifat komersial. Dan sebagian orang akan merahasiakan sidik jarinya dengan alasan datanya bersifat privasi (Han,Chin-Chuan., dkk, 2001).
Face Recognition atau pengenalan wajah sekarang ini mulai berkembang dengan berbagai tingkat keamanan yang cukup akurat. Penelitian Kolhandai Yesu dkk (Yesu,Kolhandai., dkk, 2012) mengenai “pengenalan wajah menggunakan Artificial Neural Network dengan menjadikan mata, hidung, dan mulut sebagai pola pengenalannya. Penelitian ini menghasilkan tingkat keakuratan sebesar 97%”. Begitu juga dengan penelitian yang telah dilakukan oleh Panca Mudji Rahardjo (Rahardjo, Panca Mudji,2010) mengenai “pengenalan ekspresi wajah berbasis Filter Gabor dan Backpropagation Neural Network dengan menggunakan segmentasi PCA sebelum tahap pengklasifikasian citra”.
Penelitian pengenalan wajah lainnya telah dikembangkan dengan beberapa metode yang berbeda, diantaranya Ni Wayan Marti (Marti,Ni Wayan, 2002) menggunakan metode Principle Component Analysis (PCA), Xiaogang Wang dan Xiaoou Tang (Wan,Xiaogang and Tang,Xiaoou) menggunakan Bayesian Analysis and Gabor Wafelet, Sepritahara dkk (Sepritahara., dkk) menggunakan Hidden Markov Model (HMM), Muhammad Firdaus Hashim dkk (Hashim,Muhammad Firdaus., dkk) menggunakan Template Matching dan Neural Network Classifier. Jenis penelitian yang dilakukan juga bermacam-macam, seperti pencocokan wajah melalui ekspresi, pencocokan pola wajah dalam bentuk video, pencocokan pola wajah dalam penyamaran dan sebagainya.
Oleh karena itu, peneliti ingin membuktikan teknologi biometrik dengan membuat alternatif menggunakan sistem pengenalan wajah, dengan didasarkan pada keterbatasan penelitian sebelumnya, penelitian ini akan menggunakan pola pengenalan berupa bentuk mata, bentuk hidung, dan bentuk mulut. Penelitian akan menghasilkan keakurasian dalam hal posisi wajah, di mulai dari posisi 0° hingga 45°. Selain itu citra wajah juga akan diuji dalam hal contrast citra wajah, bagaimana jika citra wajah dipengaruhi dengan cahaya yang sangat terang atau bahkan dalam keadaan kekurangan cahaya. Adapun tahapan yang harus dilakukan dalam pengolahan citra digital tersebut diantaranya pre processing, ekstraksi ciri dan recognition (Hashim, Muhammad Firdaus dkk).
Penelitian ini menggunakan metode filter gabor dengan algoritma backpropagation neural network. Menurut Anita Desiani (Desiani,Anita, 2007) mengatakan bahwa :backpropagation neural network adalah metode lanjut yang dikembangkan dari aturan perceptron. Dibandingkan dengan perceptron sebelumnya, backpropagation memiliki lapisan jamak, sedangkan perceptron memiliki lapisan tunggal. Selain itu, backpropagation juga menggunakan fungsi aktifasi dan turunannya, sehingga proses error dapat diminimalkan.
Penelitian ini menggunakan dua metode yang memiliki prinsip kerja yang berbeda, Karena penggunaan dua metode tersebut terletak pada proses proses yang berbeda.
Posting Komentar untuk "Penjelasan Mengenai Teknologi Biometrik"